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Abstract

We describe two interim results from an ongoing effort to automate the
acquisition, analysis, archiving, and distribution of satellite earth science data.
Both results are applications of Artificial Intelligence planning research to the
automatic generation of processing steps for image analysis tasks. First, we
have constructed a linear conditional planner (CPed), used to generate condi-
tional processing plans. Second, we have extended an existing hierarchical plan-
ning system to make use of durations, resources, and deadlines, thus supporting
the automatic generation of processing steps in time and resource-constrained
environments.

1 Introduction

The collection, analysis and distribution of data resulting from NASA science mis-
sions is an increasingly daunting task. The National Space Science Data Center
(NSSDC) responds to more than 2500 data requests from remote users in a single
year [8]. As of 1990, NSSDC’s archives included more than 6000 Gigabytes of digital
data and 91 million feet of film. By 1995, the NSSDC is expected to contain 40,000
Gigabytes of digital data. Shortly thereafter, the satellites of the Earth Observing
System (EOS) will come online, eventually adding new data at a rate of nearly 2000
Gigabytes per day, over an expected mission duration of 15 years [12, 6].

The EOS Data Information System (EOSDIS) is being designed and built to
support the storage, analysis, and retrieval of data from this immense archive.
Dozier [6] offers the following characterization:

EOSDIS must allow scientists to easily and quickly acquire usable, un-
derstandable, timely data. “Timely” means “a reasonable period fol-
lowing the measurements” — one to two days after the observations, or
up to a week for higher-level products. “Quickly” means minutes, not
hours. “Easily” means that the user should not have to jump through
many hoops to request the data.
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Figure 1: The EOSDIS domain

EOS data will be supplied by several different types of sensors and used by scientists
in a variety of disciplines, most with no special knowledge of how EQOS data is
obtained or organized. The type of sensor from which the data was gathered will
affect the processing necessary to regder ‘the data useful. The use to which the data
is put will determine both the i images retrieved (a geologist and an oceanographer
will be interested in very different sets of data) and the analysis to which that data
is subjected (e.g., topography vs. phytoplankton levels).

Raw and analyzed data will be stored in a distributed network of database sites,
known as Distributed Active Archive Centers (DAACs). Also connected to the
network will be a varlety of specxa}‘p_drpose hardware that can be used for further
analysis of either new or retrieved data. These analyses may consist of several steps
(e.g., scan line removal, georegistration, or normalization for the incident angle of
the sun), and w1]1 be run on a distributed network of heterogeneous machine types.
Given the enormous amount of data involved, most of it will of necessity be stored
off line. We anticipate hierarchical caches for data storage [2] with high-speed disks

at the top of the hierarchy and tape archives at the bottom Data w111 move up and

down in this hierarchy for further anaIysm e 2

A hx&lLlevel concept of the resulting system is depxcted in Flgure 1 Data'
is received lgvany of several ground stations from any of a set of satellites, and
transmitted to one or more of the archive centers, where it is analyzed as Tiécessary
(and as time permits), and then archived. Scientists interested in using the data
may make requests that data be retrieved from one or more of the archives and
analyzed further.  -.

In both joint and separate work at NASA’s Goddard Space thht Center and
the Honeywell Technology Center, we have been working on automating the ac-
quisition, initial processing, indexing, archiving, analysis, and retrieval of satellite
earth science data, W1th partlcular attention to the processmg taking place at the
DAACs.

In this paper, we present the results of ongoing work on planning for image
process tasks in the EOSDIS Product Generation System (PGS). Section 2 presents
the problem presented by PGS in additional detail. Section 4 describes the extension
of a Nonlin style hierarchical planner to use information about deadlines, durations,
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and resources. Section 3 is a dicussion of the use in image processing of conditional
plans: plans including branching points dependent on the outcome of some earlier
action (e.g., an observation of some type).

2 Data Management for Earth Science

NASA’s role in the Mission to Planet Earth is the Earth Observing System (EOS)
program and several smaller Earth science missions. These missions represent efforts
to study the Earth’s geosphere, biosphere, atmosphere, and cryosphere, as a system
of interrelated processes by modelling surface temperature, ozone depletion and
greenhouse effects, land vegetation and ocean productivity, and desert/vegetation
patterns to name a few. With participation from the European Space Agency,
Japan, Canada, and NASA, several platforms containing a multitude of sensors will
be launched in the late 1990’s, producing data that will be stored in geographically-
oriented data systems such as the EOS Data and Information System (EOSDIS).
In general, EOSDIS will manage the mission information, the data acquisition and
distribution, the generation of scientific data products, and the interface to external
systems.

Ensuring access to this information is a challenging task because of the daunting
size of EOSDIS and the potential limitations of current technologies. Over its 15
year life, the Data Archival and Distribution System (DADS), a component of the
EOSDIS, will eventually maintain around 11 petabytes [12].! While mass storage
technology will solve some archiving problems [2], finding data will require new and
innovative methods for users to effectively search the archives. The archives will
include a variety data types including raster satellite images, ancillary vector/raster
maps, derived spatial products from model simulations (e.g., output from global
temperature models), and associated engineering and management textual data,
suggesting that the archive and meta database will be both diverse and complex.

In current NASA scientific data systems, data are found by users who already
know information related to the context of the satellite processing environment, such
as the time of the satellite’s observation, the satellite and sensor type, and location.
This context-based metadata search forces the user to translate scientific needs into
project specifications that often contain esoteric NASA nomenclature. A better
solution, often called content-based metadata search, is to allow scientists to find
data based upon their scientific interests within the imagery. Providing features
based upon scientific interests for searching through a database assumes that a
system can be created to interpret imagery with the skill of a scientist, yet with the
speed of the computer. This automation has been the goal of many researchers in
remote sensing, image processing, and computer vision for years; there is no known
general solution to the problem.

!One petabyte is 10!5 bytes.
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2.1 Opportunities for Automation

In this section, we describe the necessary functions for an automated planning sys-
tem for image classification and indexing according to browse products. The entire
range of functions described here are actively under development or investigation
at this time. In the rest of the paper, we restrict ourselves to a discussion of the
generation of plans for image analysis.

Despite the the lack of a general theory, computer-based photo interpretation
operations for satellite/aerial imagery can be partially defined as file manipulation,
calibration, reduction of the number of channels, image enhancement and correc-
tion, segmentation, and pattern classification (see figure 3). These operations often
require an expert to ”mix and match” the steps depending on the quality of the
sensor, the format of the data, the properties of the sensing environment (e.g., atmo-
spheric conditions, direction of sun illumination, etc.), availability of ancﬂlary data
such as topographic maps and ground truth observations, and the set of possible
features within an image. Typically, the end result of this process is a map labelling
pixels to classification categories from proven recogmza.ble schemes for which the
sensors were designed. Example schemes include: land ‘use/land cover cloud cover
type, vegetation cover, and soil type. While these examples refer to physical ob-
jects, properties such as temperature and aerosol content also constitute legitimate
labels, only each label represents a range of continuous values. In EOS, much of
the work of the PGS will be to recogmze these features for processmg at 1eye1 2 and
above. -

In the rea.lm of automatic feature recogmtlon, the planner is the component

that optimizes accuracy as a_ function_ _of the resource constraints. If there is a
lot of available processing time due to a low incoming data rate, then the planner
chooses the image processing sequence with the highest expected accuracy. If the
data rate is high, then the planner constructs a sequence that either substitutes
computationally cheaper, yet less accurate image processing steps for eﬂieﬁéive
operations, eliminates steps that can be deleted without a major loss, or uses a
fixed-time default plan that implies an upper bound on the highest allowable data
rate (e.g., ingest only file header information that comes with the raw data)r———

The planner must make choices regardmg preprocessing steps and image clas-
sifiers as a function of the input image's header information, called ephemeris
data. For example, suppose that an image from the Moderate-Resolution Imag-
ing Spectrometer-Nadir (MODIS-N) sensor of EOS arrives with its areal extent
over Washington D.C. Further suppose that after launch, MODIS-N produced scan
lines such as LANDSAT MSS’s "sixth-line striping,” evidenced by horizontal band-
ing within the images . Modis-N was designed to characterize surface temperature
at 1-km resolution, ocean color, vegetation/land surface cover (e.g., leaf area index
and land cover type, vegetation indices), cloud cover and properties, aerosol prop-
erties, and fire occurrence. Based upon this information, the planner constructs

the sequence of steps by first stripping off the header file from the raw data, which
indicates the time of observation, the sensor, sun angle and azimuth, location, and
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file format. The planner then queries an online database to insert the new header
information annotated with a unique image id and waits for known information
to be returned related to the header, for a set of neural network weight files that
have been created by training over similar conditions, and for any ancillary data
files such as digital elevation data, ground truth, and hydrology maps. In this case,
because the location of the image is over land, the set of recognizable features will
include vegetation, cloud, and temperature classes, while it will exclude ocean re-
lated classes. Once the planner has the combined dynamic information of the header
with the static knowledge about the sensor, it begins constructing the sequence or
image processing plan.

Once the pixel labelling is completed, the planner must choose the form of
browse product as a function of the amount of storage available and the importance
of the image, as defined by priority. Ranging from low to high available storage,
the browse product can be an image classification vector ICV, a "postage stamp”
rendition of the classification map, a low resolution version of the classification
map, or a classification map that is the size of the original image. Finally, the
planner must ingest the browse product into the appropriate database with the
associated header information and the sequence of processing steps used. If it is
found later that a particular processing step was inadequate, then the meta database
can be searched for all browse products containing that step in order to initiate
reprocessing. Likewise, if a scientist, through his own analysis, determines that the
classification accuracy was incorrect, then he can submit his changes, as well as
methods, to the meta database administrators for update.

3 Conditional Analysis Plans

The automatic generation of plans for image analysis is a challenging problem.
Preliminary processing (e.g., removal of sensor artifacts) and analysis (e.g., feature
detection) involve a complex set of alternative strategies, depending in some cases
on the results of previous processing. For example, detailed location of roads and
rivers is only worth doing if there is evidence that those features are present in the
image. Plans for image processing need to be conditional, in the sense that the
course of action to be followed is dependent on the outcome of previous actions.

We have developed a conditional planner that advances the state of the art in
several respects, including the use of regression in the generation of conditional
plans and a careful treatment of the modelling of observations by permitting the
specification of a proposition as true, false, or unknown. We have successfully
applied our planner to the generation of conditional plans for image analysis in “EOS
world” (named by analogy to the “blocks world”), a planning domain based on data
analysis problems related to the Earth Observing System’s Data and Information
System (EOSDIS).

21



3.1 Motivation and Background

Classical planning has been criticized for its reliance on a complete model of ac-
tions [4]. Constructing an elaborate plan to achieve some set of goals makes little
sense if the environment is sufficiently unpredictable that the plan is likely to fail
at an early stage. There are several approaches to the problem of generating plans
for use in a changing and uncertain world. These fall generally into three classes:
making plans more robust in the face of changes in the environment [7], modifying
plans as new information becomes available, 2 and conditional planning (more pre-
cisely, planning with conditional actions): planning which takes into account the
uncertain outcomes of actions. .

Conditional action planmng is suitable for doma.lns in whlch there is hmxted
uncertainty and in which plans are constructed at a fairly high level of granularity.
Preliminary indications are that planning for image analysis is eminently suitable.
Robot planning is probably not such an application, it ca
a level of abstraction sufficiently high tha.t much of the uncertainty can be ignored.

Peot and Smith [11] have developed a non-linear planner for conditional plan-
ning. In conventional, “classical” planning applications, non-linear planning is

usua.lly an lmprovement over linear planning because fewer commltments ylelds

a smaller search space, at a relatlvely mmlma.l added cost to explore each element

of that search space [10] However, it is not clear that this tradeoff operates in -

the same way for conditional planners. Furthermore ‘the operatron whxc, s neede
to properly construct branching plans — resolvmg clobberers through condmonlng
apart — is a very difficult operation to direct. Accordingly, a linear conditional
planner may be a reasonable alternative. :

We have developed a linear conditional planner, based on McDermott’s regres-

sion planner PEDESTAL [9] This planner has been 1mplemented in Quintus Prolog,

running on Sun SPARCstatlons Tt has been tested on Peot and Smith’s ?’Sklweﬂd” '

sa.mple problem and on the sxmphﬁed model of of the EOSDIS 1mage processmg g do-
main descnbed above

3. 2 Actlon representatlon o

Followmg McDermott we represent actlons in the plan hbrary in terms of t'hree ,

predicates: preconditions, add lists a.nd delete hsts 3 A precondition entry in the
database looks as fo]lows :

- precond(action, preconditions)

This database entry specifies the facts which must hold in order that action be
performable. These preconditions are necessary, but may not be sufficient for the
action to achieve the ends we desire.

2«Reactive systems” [3, 1] are yet a,nother approach to this issue, in which it is argued that we
are better off not planning at all.

3In practice, we are free to use a more convenient notation in composing the plan library than
the one the planner will use.
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Entries describing the effects of actions look like this:

add(formula, action , effect-preconditions)
or
delete(formula, action, effect-preconditions)

These entries specify that if action is performed in a world in which both effect-
preconditions and the preconditions for action hold, then formula will hold (not
hold) at the end of action.

Here is a simple action from Peot and Smith’s ski world example:

precond(go(?x, ?7y), [at(?x), clear(?x, ?y)])
add(at(?z), go(?_.,?2), [1)
delete(at(?z), go(?z,7.), [1)

We have used the underline as in Prolog, as an “anonymous” or don’t-care variable.

We expand this representation to allow for conditional actions, like those of
Peot and Smith [11]. Such conditional actions may have several different, mutually
exclusive, sets of outcomes. We capture this by associating with every such outcome
an integer. Integers can be added to the effect-preconditions of a postcondition entry
to specify that one particular outcome must happen in order for the postcondition
to hold. For example, in the Ski World, Peot and Smith have an operator for
observing road conditions between two points. There are two possible outcomes to
this operator: either the road will be found to be clear, or it will be seen to be
closed. Here is how we represent this operator:

precond(observe(road(?x,?y)), [unknown(clear(?x,?y)),at(?x)])
add(clear(?x,?y),observe(road(?x,?y)), [bead(?act,1)])
postcond(not(clear(?x,?y)) ,observe(road(?x,?y)), [bead(?act,2)])

The variable ?act is a special one, which will be bound to the name of the step — the
actual instance of the operator — so that we may have more than one conditional
action of the same type in our plan,

3.3 Pedestal

McDermott’s PEDESTAL planner is a regression planner which represents its plan
as a dense line segment, beginning at the initial conditions and ending at the goal.
Steps are incrementally added to the plan by associating them with points on the
line segment. In order to control this process, the planner will always have a set
of active (not yet solved) goals and a set of protections which must be respected.
PEDESTAL’s goals are pairs (g,v): the first component, g being a proposition to
be established, and the second being a step for whose benefit the proposition is
to be established. The top-level goals are goals of the form (g,finish) for the
distinguished final step. ’

At each point in the planning process, PEDESTAL will pick a goal out of its active
set, and resolve it. PEDESTAL resolves its goals (g, v) in one of three ways, chosen
nondeterministically:
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1. g holds in initial conditions: In this case, the goal may be achieved without
performing any action. PEDESTAL adds a protection which guards the goal
from the beginning of the plan until step v and continues.

2. g is established by existing step: Call this step s. PEDESTAL does the
following:

(a) adds a protection of g from s until v.

(b) PEDESTAL must ensure that s has the desired effect of establishing g.
Let (g, s) be the causation preconditions for g with respect to s. Post

new goal(s)* (E(g, 8), ).
(c) PEDESTAL must also ensure that no already-existing step between s and
v negates g. This is done by posting additional goals:

For all steps z such that s < 2 < v, let the preservation preconditions of
g with respect to z be II(g, z). Post (II(g,z), z) as a new goal.

3. g is established by a new step: Choose some point in the plan at which
to msert a new step, s. Now proceed as per a preexnstmg step to achieve the

goal 7In addition, however, PEDESTAL must post as ‘goals the precondltlons

for 2 7act 8. Let those precondxtxons be (s). Post goa.l(s) (<I>(3) s).

3.4 Condltlonal Pedestal

PEDESTAL admits of a fairly stra{ghtforward a,da,pta,tlon to conditional planning.
Essentially, one adapts the PEDESTAL algorithm by mapping steps onto a chronicle

tree, instead of a line segment. When one adds conditional actions to the plan, one

adds new branches to the tree, running from the conditional action to newly-created
goal nodes One then plans for each new goal node as well as the pre exlstmg goal
node, - o :

At each point in the planning process, pick a goa.l out of the active set, and
resolve it. As before, goals are resolved either by finding that the goal holds in the

initial conditions, is established by a pre-existing step, or by inserting a new step.”

There is one (substantial) complication: ha.ndhng the addition of conditional

actions to the plan. Recall that conditional /e mu outcomes When
we add the condmonal actxon to the | plan we will glo 50 lJeca,use one of tlxe outcomes

achieve the same goa.l One may thi ontcomes” for the actlon

For ea,cli bad outcome, we intro a.*new goal node following the ba.d outcome.
Informa,lly,i ‘one mlght think of thls goa.l node as causmg us to plan a recovery from

the bad outcome.
Consider a problem from the Ski World. One wants to get to a resort (Snowbird

or Park Clty) One ’s plan so far mxght be as shown in Fxgure 2. One has planned

‘Beca.use we are assuming ground a,ctlons, we can blur the distinction between postmg a gingle
goal whxch is a conjunctxon and postmg a conjunctlon of goals each of which is a literal. :
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observe(rtl:ad(B,S)) clear
start go(home,B) go(B,Snowbird) finish
(at resort)
not clear
finish
(at resort)
Figure 2: Initial plan to get to the resort.
observe(rJoad(B,S)) clear
start go(home,B) go(B,Snowbird) finish
(at resort)
not clear
finish
(at resort)

Figure 3: Plan to go to resort after the addition of the conditional action.

to go from home to position B and then from B to Snowbird. However, one has a
remaining subgoal, which is to determine that the road from B to Snowbird is clear.
Unfortunately, this is not a sure thing. The observation operator has two possible
outcomes: either the road will be seen to be clear, or seen to be blocked. In the
latter case, one will have to plan a new way to get to the resort. The planner’s state
after the addition of the observation action is shown in Figure 3. The planner will
now have as goals whatever it had before and the goal to get to a resort when the
road from B to S is not clear, represented by the new goal on the second branch of
the plan. Notice that the two plans will share any actions which take place up until
the time the status of the road is observed. Notice also that additional actions may
be inserted into this shared prefix of the plan: for example, we might as the first
step of the plan take some money, if there was a toll on the road from C to Park
City. This would only be necessary in the event that the road from B to Snowbird

is blocked, but would be done before the agent knows whether or not the road is
blocked.
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3.5 Future work

We are in the process of extending conditional planning to an approach we call
epsilon-safe planning, in which probabilities are associated with the various out-
comes of conditional actions (e.g., with the success or failure of a given classification
routine). For any given branch of a conditional plan, we can determine a probability
of success. The total probability of success is the sum of the branches which lead
to the goal state.

4 Hierarchical Planning with Deadlines

Automated image processing within the Product Generation System (PGS) of the
Earth Observing System’s Data and Information System (EOSDIS) requires the
automatic generation of complex analysis plans, detailing the processing steps to
be taken to clean up, register, classify, and extract features from a given image.
These plans will be executed in a resource-limited environment, competing for such
resources as processing time, disk space, and the use of archive servers to retrieve
data from long-term mass storage. To complicate matters, it is important that the
results of these plans (the completed analysis products) be delivered in a timely
fashion to the scientists requesting them.

In joint work at the Honeywell Technology Center (HTC) and NASA’s Goddard
Space Flight Center, we have developed a planner that generates hierarchical plans
for PGS image processing. The schemas used by this planner (based on Nonlin’s
Task Formalism (TF))[13] have been extended to record information about the esti-
mated and worst-case duration of a given task, and about the tasks’ resource usage.
This information is used durmg plan construction, for example in the rejection of an
otherwise promising expansion for a given sub-task because it requires more time
than is available, and in the construction of detailed schedules for image processing
tasks. ] .

Accurate estimates of the time requu'ed for 1mage processmg tasks are hard to
come by, particularly for more abstract tasks (e.g., “identify features,” rather than a
detailed set of file manipulations). We have constructed a routine that traverses | the
set of tasks defined for the PGS ﬂanher defining
t?:ﬁl,(i based on the time requlred for their subtasks. Use of this routine, coupled,
with a fac1hty allowmg prnmtxve task estxmates to be updated exther ‘manually or
based on statistics gathered as the system runs over time, allows us o continually
refine the initially somewhat undependable time estimates, resulting in increasingly
effective management of scarce computational resources for the image processing
task.

The choice of Nonlin as a starting place was driven by the fact that the TF can be
used effectively to describe image processing ta,sks _Human users  tend to break these

tasks down into hlerarchles of subtasks (e g., “remove noise” may mvolve scan-line

“removal, smoothing, and despeckling, usually in ‘that order) in a way very natura.lly

expressible in TF. Nonlin’s main drawbacks included the lack of any facilities for
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reasoning about duration, deadlines, and resources. Deviser [14] adds durations,
but is not sufficiently flexible and scales poorly. Eventually, the planning function
will be integrated with scheduling and dispatch functions that will use the same
representations.

Durations and deadlines were added to the TF through the addition of a :du-
ration slot in task schemas. These specifications may be numbers, ranges, or a
function of the schema variables evaluated when the schema is instantiated. The
underlying representation of time is the TMM [5], in an implementation developed
at the Honeywell Technology Center. Calculation of duration bounds during task
expansion provides an additional constraint on search: if at any time the time
needed for a given task expansion exceeds the time available, the system will back-
track, trying an alternative expansion at the current level or higher planning levels
until a time-feasible schedule is found (or the system gives up).

5 Summary and Conclusions

Automating the processing of satellite earth science data is both timely and with
a high potential for significant improvement of the current environment. Timely,
because the current tools for managing and processing this data are beginning to
be overwhelmed. This trend will only worsen as new satellite systems come on line
over the next few years, most notably (but not exclusively) EOQS. As we have also
argued, automation of these tasks shows great potential benefit. Existing research
in Al, Operations Research, databases, and distributed systems can be adapted
to alleviate the looming data overload, in some cases by freeing humans from the
process entirely (e.g., generating browse products on ingest), and in other cases
by providing better tools for interactive use (e.g., helping scientists to retrieve and
process archived data).

In this paper, we have presented results on the application to image processing
of two bodies of work drawn from current research in AI planning: conditional
planning and planning with duration and deadlines. These results are promising,
but the work is by no means complete. Moving these systems into operational use
will require further refinement and development, which we expect to accomplish
over the next twelve to eighteen months.
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